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Introduction Background

Background

Bus travel time forecasting and its reliability/uncertainty are
important.

Passengers: make better travel plans.
Departure time
Route choice
Transport mode choice

Bus agencies: design robust bus management strategies.
Bus timetable
Bus priority signal control
Bus bunching control

Most studies mainly center on making point estimation (i.e,
deterministic forecasting).

Probabilistic forecasting for bus travel time
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Introduction Challenges

Challenges

Key point: construct the probability distribution for bus travel time.

Complex correlations among different links (local and long-range
correlations).

Strong interactions between two adjacent buses (e.g, bus bunching).

Bus travel time distributions are usually not normal and exhibit
long-tailed and multimodal characteristics.

Real-world data often have many missing/ragged values.
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Methodology Problem description

Problem Description

Bus link: the directional road segment connecting two adjacent stops
on a bus route.

Link travel time: travel time of a bus link, including the dwell time.

Trip travel time: sum of several link travel times.

Objective: forecast the travel time of a bus on its upcoming
links/trips and providing ETA distribution.
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Methodology Augmented random variable

Augmented Random Variable

ℓi,m: the link travel time of the i-th bus on the m-th link.

Link travel time vector of bus i: ℓi = [ℓi,1, ℓi,2, · · · , ℓi,n]⊤.

hi,m: the headway between the i-th bus pair at the m-th bus stop.

Define an augmented random variable x to capture correlations
between two adjacent buses.

Specifically, bus i and its leading bus i− 1 produce a sample of x:

xi =

 ℓi
ℓi−1

hi

 = [ℓi,1, · · · , ℓi,n, ℓi−1,1, · · · , ℓi−1,n, hi,1, · · · , hi,n]⊤ .
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Methodology Augmented random variable

Augmented Random Variable

The inherent relationship between link travel time and headway:

hi,m+1 − hi,m + ℓi−1,m − ℓi,m = 0, m = 1, . . . , n− 1.

Stop ID

#1

#2

#3

#4

#5

busbus 

Time
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Methodology Augmented random variable

Augmented Random Variable

Ragged values are also constrains.

Constrains can be summarized into linear equations:

Gi (alignment matrix) and ri (recording vector) for bus i.

Task 1: model p(x) using historical {Gi} and {ri}.

Task 2: use p(x) and observed links to forecast upcoming links.
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Methodology Bayesian multivariate Gaussian mixture model

Bayesian Multivariate Gaussian Mixture Model

Chen, Cheng, Jin, Trépanier, Sun CASPT 2022 9 / 21

• Data/sampling distribution: pt
(
xt
)
=

K∑
k=1

πt
kN

(
xt | µk,Σk

)
• Prior distributions:

πt ∼ Dirichlet (α)

Σk ∼ W−1 (Ψ0, ν0)

µk ∼ N
(
µ0,

1

λ0
Σk

)
zti ∼ Categorical

(
πt

)
xt
i | zti = k ∼ N (µk,Σk)
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Methodology Model inference: Gibbs sampling

Model Inference: Gibbs Sampling

Sample πt from p
(
πt | zt,α

)
.

p
(
πt | zt,α

)
∼ Dirichlet

(
M t

1 + α1,M
t
2 + α2, · · · ,M t

K + αK

)
.

Sample zti from p
(
zti | πt

i,µ,Σ,xt
i

)
.

p
(
zti = k | πt,µ,Σ,xt

i

)
=

πt
kN

(
xt
i | µk,Σk

)∑K
m=1 π

t
mN (xt

i | µm,Σm)
.

Sample (µk,Σk) from p (µ,Σ | Xk,Θ).

p (µk,Σk | Xk,Θ) ∼ N
(
µk | µ∗

0,
1

λ∗
0

Σk

)
W−1 (Σk | Ψ∗

0, ν
∗
0) ,

Sample X from p (X | µ,Σ, z,R,G).

xt
i | zti = k ∼ NSt

i
(µk,Σk) , St

i =
{
xt
i | Gt

ix
t
i = rti

}
.
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Methodology Probabilistic forecasting

Probabilistic Forecasting

Stop ID

#1

#2

#3

#4

#5

Time

bus 
Stop ID

#1

#2

#3

#4

#5

Time

bus 

Stop ID

#1

#2

#3

#4

#5

Time

bus 
Stop ID

#1

#2

#3

#4

#5

Time

bus 
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Experiments Data and experiment settings

Data and Experiment Settings

Bus in-out-stop record data in Guangzhou, China

Weekdays from December 1st, 2016 to December 31st, 2016

Perform data standardization (z-score normalization)

Performance metrics: RMSE, MAPE, LogS, CRPS

Models in comparison:

Model A: xi = [li]

Model B: xi =
[
ℓi

⊤, ℓi−1
⊤
]⊤

Model C: xi =
[
ℓi

⊤, ℓi−1
⊤,hi

⊤
]⊤
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Experiments Forecasting performance

Forecasting Performance
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Experiments Interpreting mixture components

Interpreting Mixture Components

The estimated mean vector (standardization)

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20
Link ID (Leading bus L)

1
2z 
(c

la
ss

) -0.04 0.33 0.24 0.2 0.43 0.63 0.57 0.42 0.24 0.46 0.67 0.89 1.02 1.17 1.01 0.56 0.37 0.47 0.25 0.29

-0.02 -0.08 -0.07 -0.06 -0.07 -0.05 -0.11-0.13 -0.06 -0.04 -0.21 -0.14 -0.17 -0.27 -0.27 -0.13 -0.08 -0.28 -0.25 -0.4

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20
Link ID (Following bus F)

1
2z 
(c

la
ss

) -0.01 0.31 0.32 0.16 0.47 0.65 0.64 0.5 0.22 0.42 0.64 0.83 1.04 1.17 1.04 0.58 0.36 0.22 0.06 -0.09

-0.05 -0.09 -0.1 -0.05 -0.11-0.07 -0.17 -0.16 -0.06 -0.06 -0.2 -0.15 -0.2 -0.27 -0.28 -0.15 -0.11-0.25 -0.19 -0.28

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20
Headway ID (H)

1
2z 
(c

la
ss

) -0.33 -0.29 -0.29 -0.27 -0.28 -0.27 -0.27 -0.26 -0.25 -0.21 -0.2 -0.2 -0.21 -0.2 -0.19 -0.18 -0.19 0.09 0.08 0.1

0.09 0.09 0.09 0.08 0.07 0.07 0.08 0.06 0.06 0.05 0.05 0.07 0.06 0.06 0.07 0.05 0.01 -0.08 -0.04 -0.02

0

1

0

1

0.25

0.00

Significant differences in some links and many headways
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Experiments Interpreting mixture components

Interpreting Mixture Components

Distribution of the estimated trajectory
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Class 1: longer link/trip travel times, shorter headways,
larger variances
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Experiments Interpreting mixture components

Interpreting Mixture Components

Component distribution for different intervals
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Experiments Interpreting mixture components

Interpreting Mixture Components

Correlation matrices for different components
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Class 1: leading bus and the following bus could be more correlated

Chen, Cheng, Jin, Trépanier, Sun CASPT 2022 17 / 21



Experiments Predicted distribution

Predicted Distribution
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(a) Probabilistic forecasting for 16:50 (b) Probabilistic forecasting for 17:10



Experiments Predicted distribution

Predicted Distribution
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Conclusion

Conclusion

Our approach can capture/handle:

link travel time correlations of a bus route

interactions between adjacent buses

multimodality of bus travel time distribution

missing/ragged values in data

We develop a Bayesian hierarchical framework to capture travel time
patterns in different periods of a day.

The proposed model is evaluated on a real-world dataset and results
show it performs well.
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Questions?

Thank You!

For more information
xiaoxu.chen[at]mail.mcgill.ca

https://arxiv.org/pdf/2206.06915.pdf
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